

# Biochemical Pharmacology

Biochemical Pharmacology 62 (2001) 679-684

# Inhibition of extracellular Ca<sup>2+</sup> entry by YC-1, an activator of soluble guanylyl cyclase, through a cyclic GMP-independent pathway in rat neutrophils

Jih-Pyang Wang<sup>a,b,\*</sup>, Ling-Chu Chang<sup>a</sup>, Li-Jiau Huang<sup>b</sup>, Sheng-Chu Kuo<sup>b</sup>

<sup>a</sup>Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan 407, ROC <sup>b</sup>Graduate Institute of Pharmaceutical Chemistry, China Medical College, Taichung, Taiwan 404, ROC

Received 14 August 2000; accepted 19 December 2000

### **Abstract**

The effects of a soluble guanylyl cyclase (sGC) activator, 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), on formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated  $[Ca^{2+}]_i$  elevation in rat neutrophils were examined. YC-1 produced a concentration-dependent inhibition of  $[Ca^{2+}]_i$  elevation. Pretreatment of neutrophils with YC-1 did not enhance its inhibitory effect. YC-1 also inhibited the  $[Ca^{2+}]_i$  changes caused by ionomycin. In a biphasic model, measuring the  $[Ca^{2+}]_i$  stimulation by fMLP in a  $Ca^{2+}$ -free medium followed by reintroduction of  $Ca^{2+}$ , YC-1 mainly affected  $Ca^{2+}$  influx. YC-1 also inhibited active and passive  $Mn^{2+}$  influx, and this inhibitory effect was not attenuated by the sGC inhibitor 6-anilino-5,8-quinolinequinone (LY83583). Sodium nitroprusside did not affect the fMLP-stimulated  $[Ca^{2+}]_i$  changes. Pretreatment of neutrophils with the cyclic GMP-dependent protein kinase inhibitor 8-(4-chlorophenylthio) guanosine-3',5'-monophosphorothioate, Rp-isomer (Rp-8-pCPT-cGMPS), LY83583, the protein phosphatase 2B inhibitor cyclosporin A, or the protein kinase inhibitor staurosporine did not attenuate the inhibition of  $[Ca^{2+}]_i$  by YC-1. YC-1 inhibited the fMLP-stimulated protein tyrosine phosphorylation. These results indicate that cyclic GMP does not play an important role in the regulation of  $[Ca^{2+}]_i$  in rat neutrophils. Inhibition of fMLP-stimulated  $[Ca^{2+}]_i$  changes by YC-1 is mainly via the blockade of  $Ca^{2+}$  entry through the inhibition of tyrosine kinase activity, but not the stimulation of protein kinase C and protein phosphatase 2B. © 2001 Elsevier Science Inc. All rights reserved.

Keywords: Neutrophil; YC-1; Intracellular free calcium; Cyclic GMP; Protein tyrosine phosphorylation

### 1. Introduction

sGC exists as a heterodimeric hemoprotein [1] and acts by increasing intracellular cyclic GMP levels to mediate numerous cellular processes [2]. To understand the involvement of the cyclic GMP signaling pathway in cellular processes, there is a need to selectively change cellular cyclic GMP levels. The types of sGC activators known thus far are

Abbreviations: CO, carbon monoxide; CPA, cyclopiazonic acid; fMLP, formyl-methionyl-leucyl-phenylalanine; HBSS, Hanks' balanced salt solution; IP<sub>3</sub>, inositol 1,4,5-trisphosphate; NO, nitric oxide; PKC, protein kinase C; PKG, cyclic GMP-dependent protein kinase; PLC, phospholipase C; PMA, phorbol 12-myristate 13-acetate; Rp-8-pCPT-cGMPS, 8-(4-chlorophenylthio)guanosine-3',5'-monophosphorothioate, Rp-isomer; sGC, soluble guanylyl cyclase; and SNP, sodium nitroprusside.

NO, CO, and YC-1 [3-(5'-hydroxymethyl-2'-furyl]-1-benzyl indazole]. NO has emerged as a key cellular messenger for a number of biological functions. NO activates sGC by interacting with the heme moiety to form a five-coordinated complex by cleavage of the Fe-His bond [3]. However, NO has other cyclic GMP-independent effects, including nitrosylation and nitration of proteins, disruption of ironsulfur centers, and oxidation of macromolecules via the formation of peroxynitrite [4,5]. The risk of generating the adverse effects of NO by NO donors can be avoided using NO-independent activators of sGC. Activation of sGC by CO occurs without cleavage of the Fe—His bond and by the formation of a six-coordinated complex [3]. However, CO is a very weak sGC activator in comparison with NO. Recently, a direct and NO-independent sGC activator, YC-1, was introduced [6]. YC-1 was shown to be an antithrombotic agent, inhibiting platelet aggregation and proliferation of vascular smooth muscle [7,8]. Unlike NO and

<sup>\*</sup> Corresponding author. fax: +886-42-359-2705.

E-mail address: w1994@vghtc.vghtc.gov.tw (J-P. Wang).

CO, YC-1 exerts an allosteric regulation but does not affect the heme spectrum of sGC [9]. In addition, a synergistic action was observed by the combination of YC-1 with NO or CO [10]. Ligands at this allosteric site may represent a novel class of drugs that exert beneficial effects by sensitizing sGC toward its physiological activator, NO or CO. YC-1 has since been widely used as an important research tool to characterize sGC and to probe for the involvement of cyclic GMP in various biological processes.

Neutrophils play a pivotal role in inflammatory reactions and constitute the first line of host defense. In response to a variety of soluble and particulate stimuli, activated neutrophils display chemotaxis, phagocytosis, degranulation, and superoxide anion generation [11]. In general, the increase in cellular cyclic AMP levels inhibits chemoattractant-induced responses [12]. Neutrophils possess sGC and PKG [13,14]. However, the physiological role of cyclic GMP is still poorly understood. It appears that cyclic AMP and cyclic GMP play different roles in neutrophil activation. Cyclic GMP has been implicated as a modulator of neutrophil migration [15], and it inhibits or potentiates exocytosis in neutrophils [16,17]. Ca<sup>2+</sup> signaling has been thought to be important in many neutrophil processes [18]. In this study, we used YC-1 to elucidate the role of cyclic GMP in the regulation of [Ca<sup>2+</sup>]<sub>i</sub> in fMLP-stimulated rat neutrophils. However, our findings indicated that the inhibition by YC-1 of [Ca<sup>2+</sup>]; elevation occurs in a cyclic GMP-independent manner. Therefore, testing this new type of sGC activator on biological functions may also include the risk of observing the results of cyclic GMP-independent actions.

### 2. Materials and methods

### 2.1. Materials

Dextran T-500 and enhanced chemiluminescence reagent were purchased from Amersham Pharmacia Biotech. HBSS was purchased from Gibco Life Technologies. Fluo-3 AM, fura-2 AM, and diethylenetriamine pentaacetic acid were purchased from Molecular Probes Inc. LY83583 (6-anilino-5,8-quinolinequinone) was purchased from RBI Laboratories. Rp-8-pCPT-cGMPS was purchased from Biolog Life Sciences. Wortmannin was purchased from the Calbiochem-Novabiochem Co. Mouse monoclonal antibody to phosphotyrosine was purchased from BD Transduction Laboratories. YC-1 was synthesized as described previously [19]. BW755C [3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline] was provided by Wellcome Research Laboratories. All other chemicals were purchased from the Sigma Chemical Co.

### 2.2. Neutrophil isolation

Rat blood was collected from the abdominal aorta, and the neutrophils were purified by dextran sedimentation, centrifugation through Ficoll-Hypaque, and the hypotonic lysis of erythrocytes [20]. Purified neutrophils containing > 95% viable cells were resuspended in HBSS containing 10 mM HEPES, pH 7.4, and 4 mM NaHCO<sub>3</sub>, and kept in an ice bath before use.

# 2.3. $[Ca^{2+}]_i$ measurement

Neutrophils (5 × 10<sup>7</sup> cells/mL) were loaded with 5  $\mu$ M fluo-3 AM at 37° for 45 min. After being washed, the cells were resuspended in HBSS to 5 × 10<sup>6</sup> cells/mL. Fluorescence was monitored with a fluorescence spectrophotometer (PTI, Deltascan 4000) at 535 nm with excitation at 488 nm. [Ca<sup>2+</sup>]<sub>i</sub> was calibrated from the fluorescence intensity as follows: [Ca<sup>2+</sup>]<sub>i</sub> =  $K_d$  × [(F – F<sub>min</sub>)/(F<sub>max</sub> – F)], where F is the observed fluorescence intensity [21]. The values F<sub>max</sub> and F<sub>min</sub> were obtained at the end of experiments by the sequential addition of 0.33% Triton X-100 and 50 mM EGTA. The  $K_d$  was taken as 400 nM [22].

# 2.4. Assessment of Mn<sup>2+</sup> influx

Neutrophils (5  $\times$  10<sup>7</sup> cells/mL) were loaded with 5  $\mu$ M fura-2 AM at 37° for 15 min, then diluted 5-fold with HBSS, and incubated for an additional 15 min. After being washed, the cells were resuspended in HBSS to 5  $\times$  10<sup>6</sup> cells/mL. The entry of Mn<sup>2+</sup> into cells was measured with the fura-2 fluorescence quenching technique. Fluorescence was monitored in the presence or absence of 1 mM Ca<sup>2+</sup> and 10  $\mu$ M CPA at 510 nm with excitation at 360 nm [23,24], and fluorescence intensity declined as Mn<sup>2+</sup> was added. Diethylenetriamine pentaacetic acid (2 mM) was added at the end of an experiment, indicating that < 5% of the total fluorescence quenched by Mn<sup>2+</sup> was due to leakage of fura-2.

### 2.5. Immunoblotting analysis

Cells were preincubated with test drugs for the indicated time before stimulation. Reactions were quenched by the addition of a stopping solution (20% trichloroacetic acid, 1 mM phenylmethylsulfonyl fluoride, 2 mM N-ethylmaleimide, 10 mM NaF, 2 mM Na<sub>3</sub>VO<sub>4</sub>, 2 mM p-nitrophenyl phosphate, 7 µg/mL of leupeptin and pepstatin). Proteins were electrophoresed on 10% sodium dodecyl sulfate-polyacrylamide gels and then transferred to polyvinylidene difluoride membranes. The membranes were blocked with 5% (w/v) non-fat dried milk in TBST buffer [10 mM Tris–HCl (pH 7.5), 150 mM NaCl, and 0.1% Tween 20] and probed with anti-phosphotyrosine antibody [1:1000 (v/v) dilution in TBST buffer with 0.5% (w/v) non-fat dried milk]. Detection was made using an enhanced chemiluminescence reagent.

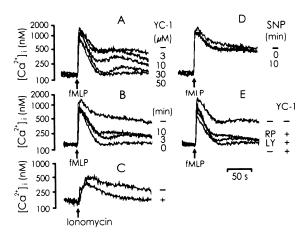



Fig. 1. Effect of YC-1 and SNP on the fMLP- or ionomycin-stimulated elevation of  $[{\rm Ca^{2+}}]_i$  in neutrophils. Fluo-3-loaded cells in HBSS containing 1 mM  ${\rm Ca^{2+}}$  were (A) stimulated with 0.3  $\mu$ M fMLP in combination with the indicated concentrations of YC-1; preincubated with (B) 50  $\mu$ M YC-1 or (D) 1 mM SNP for the indicated time periods at 37° before stimulation with 0.3  $\mu$ M fMLP; (C) stimulated with 0.2  $\mu$ M ionomycin in combination with or without 50  $\mu$ M YC-1; and (E) preincubated with DMSO, 100  $\mu$ M Rp-8-pCPT-cGMPS (RP) or 10  $\mu$ M LY83583 (LY) at 37° for 10 min before stimulation with 0.3  $\mu$ M fMLP in combination with or without 50  $\mu$ M YC-1. The final volume of DMSO in the reaction mixture was 0.5%. The data presented are representative of three independent experiments with similar results.

### 3. Results and discussion

# 3.1. Effect of YC-1 on $[Ca^{2+}]_i$

Activation of neutrophils via the cell surface fMLP receptor causes a G protein-dependent activation of PLC that catalyzes the hydrolysis of phosphatidylinositol 4,5bisphosphate to produce IP<sub>3</sub> [25], which, in turn, causes a transient increase of [Ca<sup>2+</sup>]; due to Ca<sup>2+</sup> release from the internal Ca2+ stores, followed by a sustained elevation of  $[Ca^{2+}]_i$  due to  $Ca^{2+}$  entry from the extracellular medium [26]. The fMLP-stimulated elevation of [Ca<sup>2+</sup>]; was inhibited by YC-1, added simultaneously with fMLP, in a concentration-dependent manner (Fig. 1A). Preincubation of neutrophils with YC-1 (50 µM) did not enhance the inhibitory effect (Fig. 1B). It has been reported that YC-1 (60 μM) suppresses IP<sub>3</sub> formation and the increase of [Ca<sup>2+</sup>]<sub>i</sub> in activated platelets [7]. The inhibition of the late sustained phase but not the initial rapid transient phase of [Ca<sup>2+</sup>]<sub>i</sub> elevation by YC-1 suggested that this compound probably did not affect significantly the PLC activity in rat neutrophils. YC-1 (50 µM) inhibited the ionomycin-stimulated [Ca<sup>2+</sup>]<sub>i</sub> elevation (Fig. 1C), further implying the involvement of a PLC/IP3-independent pathway because ionomycin complexes and transports Ca<sup>2+</sup> in a one-to-one stoichiometry [27], and mobilization of intracellular Ca<sup>2+</sup> by ionomycin is independent of IP<sub>3</sub> formation.

# 3.2. Role of cyclic GMP in the regulation of $[Ca^{2+}]_i$

YC-1 and an NO donor, SNP, increased cellular cyclic GMP levels in platelets in a concentration- and time-dependent manner [7]. The cyclic GMP system is an important component in the modulation of [Ca<sup>2+</sup>]; by a mechanism involving activation of PKG in smooth muscle cells [28]. However, the role of cyclic GMP in the regulation of [Ca<sup>2+</sup>]<sub>i</sub> in platelets is uncertain [29]. Neutrophils possess sGC, which is activated by SNP [30]. In fact, YC-1 (30  $\mu$ M) increased the cellular cyclic GMP levels in rat neutrophils  $(1.47 \pm 0.05 \text{ vs } 0.37 \pm 0.05 \text{ pmol/}10^7 \text{ cells, treated vs})$ control values), and this effect was greatly suppressed by an sGC inhibitor, LY83583 (0.46  $\pm$  0.13 pmol/10<sup>7</sup> cells at 10 μM). The observation that neutrophils pretreated with SNP (1 mM) for various time periods did not show significant inhibition of [Ca<sup>2+</sup>]<sub>i</sub> (Fig. 1D), together with a previous report that SNP and dibutyryl cyclic GMP, a cell-permeant analogue of cyclic GMP, had no effect on the rise in [Ca<sup>2+</sup>]<sub>i</sub> induced by fMLP at a maximal concentration [31], argues against the critical role of cyclic GMP in the regulation of [Ca<sup>2+</sup>]; in neutrophils. The cell-permeant PKG inhibitor Rp-8-pCPT-cGMPS antagonizes the YC-1-induced relaxation of aortic rings [32]. Pretreatment of neutrophils with 100  $\mu$ M Rp-8-pCPT-cGMPS or 10  $\mu$ M LY83583 did not attenuate the inhibition of fMLP-stimulated [Ca<sup>2+</sup>]; elevation by YC-1 (Fig. 1E), precluding the involvement of a cyclic GMP/PKG signaling pathway in the regulation of  $[Ca^{2+}]_i$ . In agreement with this notion, ODQ (1*H*-[1,2, 4]oxadiazolo[4,3-a]quinoxalin-1-one), a specific inhibitor of sGC [33], at concentrations up to 60  $\mu$ M failed to reverse the inhibition of YC-1 (data not shown). However, a recent report indicated that ODQ interferes with various heme protein-dependent processes and lacks specificity for sGC [34].

## 3.3. Effect of YC-1 on extracellular Ca<sup>2+</sup> and Mn<sup>2+</sup> entry

In an experiment to determine the effect of YC-1 on [Ca<sup>2+</sup>]; in a Ca<sup>2+</sup>-free medium, Ca<sup>2+</sup> release from internal stores contributed to the observed fMLP-stimulated changes in [Ca<sup>2+</sup>]<sub>i</sub>. This was most likely mediated through the formation of IP<sub>3</sub>. In contrast, the changes observed in [Ca<sup>2+</sup>]<sub>i</sub> following the reintroduction of Ca<sup>2+</sup> in the medium represented entry of extracellular Ca<sup>2+</sup>. Neutrophils as nonexcitable cells do not possess a voltage-dependent Ca<sup>2+</sup> channel. Although the mechanism for the Ca<sup>2+</sup> entry pathway is still obscure, the capacitative Ca<sup>2+</sup> entry model (store-operated Ca<sup>2+</sup>-entry pathway), in which depletion of the Ca<sup>2+</sup> stores generates a signal that induces Ca<sup>2+</sup> influx from the extracellular medium, seems applicable in neutrophils [26]. YC-1, added simultaneously with fMLP, slightly inhibited the [Ca<sup>2+</sup>]<sub>i</sub>; however, it concentration-dependently suppressed the changes in [Ca2+]i caused by the subsequent addition of Ca<sup>2+</sup> (Fig. 2A). The latter response was also confirmed when YC-1 was added simultaneously

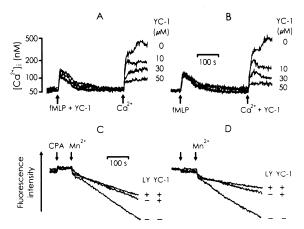



Fig. 2. Effect of YC-1 on fMLP-stimulated changes in  $[Ca^{2+}]_i$  and on Mn<sup>2+</sup> influx. Fluo-3-loaded cells in  $Ca^{2+}$ -free HBSS were (A) stimulated with 0.3  $\mu$ M fMLP in combination with the indicated concentrations of YC-1 and subsequently added 0.5 mM  $Ca^{2+}$ , and (B) stimulated with 0.3  $\mu$ M fMLP and subsequently added 0.5 mM  $Ca^{2+}$  in combination with the indicated concentrations of YC-1. Fura-2-loaded cells were suspended (C) in medium containing 1 mM  $Ca^{2+}$ , preincubated with DMSO or 20  $\mu$ M LY83583 (LY) at 37° for 1 min followed by DMSO or 30  $\mu$ M YC-1 for an additional 1 min, and subsequently exposed to 10  $\mu$ M CPA and 0.5 mM Mn<sup>2+</sup> as indicated; and (D) in  $Ca^{2+}$ -free medium, preincubated with DMSO or 20  $\mu$ M LY83583 (LY) at 37° for 1 min followed by DMSO or 30  $\mu$ M YC-1 (1st arrow), and subsequently exposed to 50  $\mu$ M Mn<sup>2+</sup> as indicated. The final volume of DMSO in the reaction mixture was 0.5%. The data presented are representative of three independent experiments with similar results.

with the reintroduction of Ca<sup>2+</sup> (Fig. 2B). These results suggest that the inhibition of fMLP-stimulated [Ca<sup>2+</sup>]<sub>i</sub> elevation by YC-1 is mainly caused by the blockade of Ca<sup>2+</sup> entry. This mode of action also explains the inhibition of the ionomycin-induced changes in [Ca<sup>2+</sup>]<sub>i</sub> by YC-1 because low concentrations of ionomycin induce Ca<sup>2+</sup> influx secondary to the ionophore-mediated emptying of the Ca<sup>2+</sup> stores [35].

Mn<sup>2+</sup>-mediated quenching of cytosolic fura-2 has proved to be a useful model system for investigating Ca<sup>2+</sup> influx because Mn<sup>2+</sup> traces only influx and it is not a substrate for the ATPase that pumps Ca<sup>2+</sup> out of the cytosol. Mn<sup>2+</sup> permeates through the Ca<sup>2+</sup> influx pathway in neutrophils after depletion of Ca2+ stores [23] and subsequently quenches the fluorescence signal by its high-affinity binding with fura-2. CPA inhibits the Ca2+-ATPase of intracellular Ca2+ stores and, consequently, activates Ca2+ and Mn<sup>2+</sup> influx from the extracellular medium [23]. In a Ca<sup>2+</sup>-free medium, the addition of Mn<sup>2+</sup> induces a decline in the fluorescence signal, which is attributed to passive Mn<sup>2+</sup> diffusion through the Ca<sup>2+</sup> influx pathway in the resting fura-2-loaded neutrophils [24]. The finding that YC-1 (30  $\mu$ M) inhibited both active and passive Mn<sup>2+</sup> influx (Fig. 2, C and D) supported the evidence for a blockade of Ca<sup>2+</sup> entry independent of stimulated Ca<sup>2+</sup> efflux. In addition, LY83583 did not attenuate the inhibition of Mn<sup>2+</sup> influx by YC-1 (Fig. 2, C and D), also providing evidence against the implication of a cyclic GMP signal.

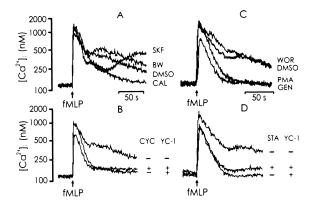



Fig. 3. Effect of several signaling step inhibitors on the inhibition by YC-1 of [Ca<sup>2+</sup>]<sub>i</sub> elevation. Fluo-3-loaded cells in HBSS containing 1 mM Ca<sup>2+</sup> were (A) preincubated with DMSO, 30 μM SKF525A (SKF), 30 μM BW755C (BW), or 0.1 μM calyculin A (CAL) for 3 min before stimulation with 0.3 μM fMLP; (B) preincubated with DMSO or 1 μM cyclosporin A (CYC) for 3 min before stimulation with 0.3 μM fMLP in combination with or without 50 μM YC-1; (C) preincubated with DMSO or 3 μM wortmannin (WOR) for 3 min before stimulation with 0.3 μM fMLP, or stimulated with 0.3 μM fMLP in combination with 0.1 μM PMA or 100 μM genistein (GEN); and (D) preincubated with DMSO or 150 nM staurosporine (STA) for 3 min before stimulation with 0.3 μM fMLP in combination with or without 50 μM YC-1. The final volume of DMSO in the reaction mixture was 0.5%. The data presented are representative of three independent experiments with similar results.

# 3.4. Effect of $Ca^{2+}$ influx modulators on $[Ca^{2+}]_i$

It has been reported that depletion of endothelial  $Ca^{2+}$  stores activates microsomal cytochrome P450, and its arachidonic acid metabolite is a second messenger for the activation of  $Ca^{2+}$  entry [36]. The cytochrome P450 inhibitor SKF525A (30  $\mu$ M) could evoke a partial and transient inhibition of the fMLP-stimulated changes in  $[Ca^{2+}]_i$ ; however, the dual cyclooxygenase/lipoxygenase inhibitor BW755C (30  $\mu$ M) had a negligible effect (Fig. 3A), suggesting a plausible involvement of cytochrome P450 in the activation of the  $Ca^{2+}$  entry pathway in rat neutrophils. This finding conforms with a study in human neutrophils [37].

There is evidence that phosphorylation of certain proteins leads to regulation of Ca2+ entry through a storeoperated Ca2+-entry pathway. A protein phosphatase 1/2A inhibitor, calyculin A, diminished the Ca<sup>2+</sup>-ATPase inhibitor-induced Ca<sup>2+</sup> influx, whereas the inhibitor of protein phosphatase 2B, cyclosporin A, was a potentiator in human neutrophils [38]. The finding that calyculin A (0.1  $\mu$ M) attenuated the fMLP-induced Ca2+ entry was consistent with a previous report in human neutrophils [39], suggesting the stimulation of protein phosphatase 1/2A during fMLP activation. However, protein phosphatase 2B probably did not play a crucial role in the fMLP-activated signal transduction pathway, as indicated by identical fMLP-stimulated changes in [Ca<sup>2+</sup>]<sub>i</sub> in both the presence and absence of cyclosporin A (1 µM). In addition, YC-1 did not inhibit the fMLP-stimulated changes in [Ca<sup>2+</sup>]; via activation of phosphatase 2B because cyclosporin A failed to overcome

the inhibitory effect of YC-1 (Fig. 3B). Whether protein phosphatase 1/2A is inhibited by YC-1 needs further investigation.

Phorbol ester acts through PKC-mediated phosphorylation and produces a sustained inhibition of Ca<sup>2+</sup> entry in human neutrophils [39]. Moreover, the finding that the entry of Ca<sup>2+</sup> via the capacitative entry mechanism is sensitive to the inhibition of tyrosine kinase has been reported in platelets [40]. The finding that both PMA and a tyrosine kinase inhibitor, genistein, attenuated the Ca<sup>2+</sup> entry suggests that PKC and tyrosine kinase are also responsible for the regulation of Ca<sup>2+</sup> entry in rat neutrophils (Fig. 3C). Since the protein kinase inhibitor staurosporine failed to overcome the inhibitory effect of YC-1 (Fig. 3D), the activation of PKC by YC-1 seems unlikely.

 $Ca^{2+}$  influx induced by Fc $\gamma$  receptor cross-linking was inhibited by a phosphatidylinositol 3-kinase inhibitor, wortmannin [41]. However, a previous report indicating that the  $Ca^{2+}$  response evoked by fMLP is not sensitive to wortmannin [42] is in line with our observation (Fig. 3C). These results exclude the possibility of the inhibition of  $Ca^{2+}$  entry by YC-1 through phosphatidylinositol 3-kinase.

### 3.5. Effect of YC-1 on protein tyrosine phosphorylation

Growing evidence supports the hypothesis that activation of protein kinases phosphorylates either the store-operated  $Ca^{2+}$  entry pathway protein itself or the regulatory proteins, leading to the regulation of  $Ca^{2+}$  entry. Stimulation with fMLP resulted in an increase in tyrosine phosphorylation of several cellular proteins. This response was inhibited by 50  $\mu$ M YC-1 and 100  $\mu$ M genistein, affecting the phosphorylation of proteins of molecular mass 38–44, 50–62, 77–85, and 115 kDa (Fig. 4). Although little is known about specific substrates for tyrosine kinase in the regulation of  $Ca^{2+}$  entry, inhibition of tyrosine kinase is probably responsible for the inhibitory effect of YC-1.

In summary, our results demonstrated that the fMLPstimulated elevation of  $[Ca^{2+}]_i$  was inhibited by a sGC activator, YC-1, mainly via the blockade of Ca2+ entry. However, inhibition of Ca<sup>2+</sup> entry by YC-1 might have had an additional component of action distal to its effect on sGC, because the cyclic GMP signal did not play a critical role in the regulation of fMLP-stimulated Ca<sup>2+</sup> entry. Inhibition of Ca<sup>2+</sup> entry by YC-1 was probably attributable to inhibition of tyrosine kinase, but not to inhibition of phosphatidylinositol 3-kinase or to stimulation of PKC or protein phosphatase 2B. Whether YC-1 inhibited protein phosphatase 1/2A and cytochrome P450 remains to be determined. Studies of the role of cyclic GMP in biological processes carried out with YC-1 should be evaluated carefully to determine whether the effects found are really attributable to cyclic GMP.

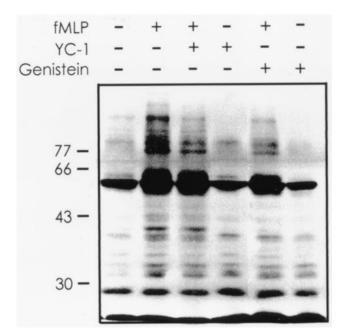



Fig. 4. Effect of YC-1 on protein tyrosine phosphorylation. Cells were preincubated at 37° with DMSO, 50  $\mu$ M YC-1, or 100  $\mu$ M genistein for 1 min, either before stimulation with 0.1  $\mu$ M fMLP in combination with 5  $\mu$ g/mL of cytochalasin B or without stimulation. One minute later, protein tyrosine phosphorylation was detected by immunoblot analysis using anti-phosphotyrosine antibodies. The final volume of DMSO in the reaction mixture was 0.5%. The data presented are representative of three independent experiments with similar results.

### Acknowledgments

This work was supported by grants from the National Science Council of the Republic of China (NSC89-2320-B-075A-003)

### References

- Wedel BJ, Garbers DL. New insights on the functions of the guanylyl cyclase receptors. FEBS Lett 1997;410:29-33.
- [2] Schmidt HH, Walter U. NO at work. Cell 1994;78:919-25.
- [3] Stone JR, Marletta MA. Synergistic activation of soluble guanylate cyclase by YC-1 and carbon monoxide: implications for the role of cleavage of the iron-histidine bond during activation by nitric oxide. Chem Biol 1998;5:255-61.
- [4] Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS. A redox-based mechanism for the neuroprotective, and neurodestructive effects of nitric oxide, and related nitroso-compounds. Nature 1993;364:626–32.
- [5] Roy B, Lepoivre M, Henry Y, Fontecave M. Inhibition of ribonucleotide reductase by nitric oxide derived from thionitrites: reversible modifications of both subunits. Biochemistry 1995;34:5411–8.
- [6] Wu C-C, Ko F-N, Kuo S-C, Lee F-Y, Teng C-M. YC-1 inhibited human platelet aggregation through NO-independent activation of soluble guanylate cyclase. Br J Pharmacol 1995;116:1973–8.
- [7] Ko F-N, Wu C-C, Kuo S-C, Lee F-Y, Teng C-M. YC-1, a novel activator of platelet guanylate cyclase. Blood 1994;84:4226–33.
- [8] Teng C-M, Wu C-C, Ko F-N, Lee F-Y, Kuo S-C. YC-1, a nitric oxide-independent activator of soluble guanylate cyclase, inhibits platelet-rich thrombosis in mice. Eur J Pharmacol 1997;320:161–6.

- [9] Friebe A, Koesling D. Mechanism of YC-1-induced activation of soluble guanylyl cyclase. Mol Pharmacol 1998;53:123–7.
- [10] Friebe A, Müllershausen F, Smolenski A, Walter U, Schultz G, Koesling D. YC-1 potentiates nitric oxide-, and carbon monoxideinduced cyclic GMP effects in human platelets. Mol Pharmacol 1998; 54:962–7.
- [11] Borregaard N. The human neutrophils. Function and dysfunction. Eur J Haematol 1988;41:401–13.
- [12] Coffey RG. Effects of cyclic nucleotides on granulocytes. Immunol Ser 1992;57:301–38.
- [13] Lad PM, Glovsky MM, Richards JH, Smiley PA, Backstrom B. Regulation of human neutrophil guanylate cyclase by metal ions, free radicals and the muscarinic cholinergic receptor. Mol Immunol 1985; 22:731–9.
- [14] Pryzwansky KB, Wyatt TA, Nichols H, Lincoln TM. Compartmentalization of cyclic GMP-dependent protein kinase in formyl-peptide stimulated neutrophils. Blood 1990;76:612–8.
- [15] VanUffelen BE, de Koster BM, Van den Broek PJ, VanSteveninck J, Elferink JG. Modulation of neutrophil migration by exogenous gaseous nitric oxide. J Leukoc Biol 1996;60:94–100.
- [16] Ignarro LJ, George WJ. Hormonal control of lysosomal enzyme release from human neutrophils: elevation of cyclic nucleotide levels by autonomic neurohormones. Proc Natl Acad Sci USA 1974;71: 2027–31.
- [17] Schröder H, Ney P, Woditsch I, Schrör K. Cyclic GMP mediates SIN-1-induced inhibition of human polymorphonuclear leukocytes. Eur J Pharmacol 1990;182:211–8.
- [18] Smolen JE, Korchak HM, Weissmann G. The roles of extracellular and intracellular calcium in lysosomal enzyme release and superoxide anion generation by human neutrophils. Biochim Biophys Acta 1981; 677:512–20.
- [19] Yoshina S, Tanaka A, Kuo S-C. Studies on heterocyclic compounds. XXXIV. Synthesis of furo[3,2-c]pyrazole derivatives. (2) Electrophilic substitution of 1,3-diphenylfuro[3,2-c]pyrazole. Yakugaku Zasshi 1978;98:204-9.
- [20] Wang J-P, Raung S-L, Kuo Y-H, Teng C-M. Daphnoretin-induced respiratory burst in rat neutrophils is, probably, mainly through protein kinase C activation. Eur J Pharmacol 1995;288:341–8.
- [21] Merritt JE, McCarthy SA, Davies MP, Moores KE. Use of fluo-3 to measure cytosolic Ca<sup>2+</sup> in platelets and neutrophils. Loading cells with the dye, calibration of traces, measurements in the presence of plasma, and buffering of cytosolic Ca<sup>2+</sup>. Biochem J 1990;269:513-9.
- [22] Kao JP, Harootunian AT, Tsien RY. Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem 1989;264:8179–84.
- [23] Demaurex N, Lew DP, Krause KH. Cyclopiazonic acid depletes intracellular Ca<sup>2+</sup> stores and activates an influx pathway for divalent cations in HL-60 cells. J Biol Chem 1992;267:2318–24.
- [24] Wong K, Kwan-Yeung L, Turkson J. Staurosporine clamps cytosolic free Ca<sup>2+</sup> concentrations of human neutrophils. Biochem J 1992;283: 499–505.
- [25] Verghese MW, Smith CD, Snyderman R. Role of guanine nucleotide regulatory protein in polyphosphoinositide degradation and activation of phagocytic leukocytes by chemoattractants. J Cell Biochem 1986; 32:59-69.
- [26] Berridge MJ, Irvine RF. Inositol phosphates and cell signalling. Nature 1989;341:197–205.
- [27] Liu CM, Hermann TE. Characterization of ionomycin as a calcium ionophore. J Biol Chem 1978;253:5892–4.

- [28] Francis SH, Noblett BD, Todd BW, Wells JN, Corbin JD. Relaxation of vascular and tracheal smooth muscle by cyclic nucleotide analogs that preferentially activate purified cGMP-dependent protein kinase. Mol Pharmacol 1988;34:506–17.
- [29] Wu C-C, Ko F-N, Teng C-M. Inhibition of platelet adhesion to collagen by cGMP-elevating agents. Biochem Biophys Res Commun 1997;231:412–6.
- [30] Feelisch M, Noack EA. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol 1987;139:19–30.
- [31] Wenzel-Seifert K, Ervens J, Seifert R. Differential inhibition and potentiation by cell- permeant analogues of cyclic AMP and cyclic GMP and NO-containing compounds of exocytosis in human neutrophils. Naunyn Schmiedebergs Arch Pharmacol 1991;344:396–402.
- [32] Wegener JW, Gath I, Förstermann U, Nawrath H. Activation of soluble guanylyl cyclase by YC-1 in aortic smooth muscle but not in ventricular myocardium from rat. Br J Pharmacol 1997;122:1523–9.
- [33] Garthwaite J, Southam E, Boulton CL, Nielsen EB, Schmidt K, Mayer B. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxodiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol 1995;48:184–8.
- [34] Feelisch M, Kotsonis P, Siebe J, Clement B, Schmidt HHHW. The soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3,-a]quinoxalin-1-one is a nonselective heme protein inhibitor of nitric oxide synthase and other cytochrome P-450 enzymes involved in nitric oxide donor bioactivation. Mol Pharmacol 1999;56:243–53.
- [35] Montero M, Alvarez J, García-Sancho J. Agonist-induced Ca<sup>2+</sup> influx in human neutrophils is secondary to the emptying of intracellular calcium stores. Biochem J 1991;277:73–9.
- [36] Graier WF, Simecek S, Sturek M. Cytochrome P450 mono-oxygenase-regulated signalling of Ca<sup>2+</sup> entry in human, and bovine endothelial cells. J Physiol (Lond) 1995;482:259–74.
- [37] Montero M, García-Sancho J, Alvarez J. Comparative effects of cytochrome P-450 inhibitors on Ca<sup>2+</sup> and Mn<sup>2+</sup> entry induced by agonists or by emptying the Ca<sup>2+</sup> stores of human neutrophils. Biochim Biophys Acta 1993;1177:127–33.
- [38] Wenzel-Seifert K, Krautwurst D, Musgrave I, Seifert R. Thapsigargin activates univalent- and bivalent-cation entry in human neutrophils by a SK&F 1396365- and Gd<sup>3+</sup>-sensitive pathway and is a partial secretagogue: involvement of pertussis toxin-sensitive G-proteins and protein phosphatases 1/2A and 2B in the signal transduction pathway. Biochem J 1996;314:679–86.
- [39] Montero M, García-Sancho J, Alvarez J. Phosphorylation downregulates the store-operated Ca<sup>2+</sup> entry pathway of human neutrophils. J Biol Chem 1994;269:3963–7.
- [40] Sargeant P, Farndale RW, Sage SO. ADP- and thapsigargin-evoked Ca<sup>2+</sup> entry, and protein-tyrosine phosphorylation are inhibited by the tyrosine kinase inhibitors genistein, and methyl-2,5-dihydroxycinnamate in fura-2-loaded human platelets. J Biol Chem 1993;268: 18151–6.
- [41] Vossebeld PJM, Homburg CH, Schweizer RC, Ibarrola I, Kessler J, Koenderman L, Roos D, Verhoeven AJ. Tyrosine phosphorylationdependent activation of phosphatidylinositide 3-kinase occurs upstream of Ca<sup>2+</sup>-signalling induced by Fcγ receptor cross-linking in human neutrophils. Biochem J 1997;323:87–94.
- [42] Dewald B, Thelen M, Baggiolini M. Two transduction sequences are necessary for neutrophil activation by receptor agonists. J Biol Chem 1988;263:16179–84.